Document Type

Article

Publication Date

1-12-2022

Publication Title

IEEE Journal of Biomedical and Health Informatics

Abstract

Recent applications ofdeep learning have shown promising results for classifying unstructured text in the healthcare domain. However, the reliability of models in production settings has been hindered by imbalanced data sets in which a small subset of the classes dominate. In the absence of adequate training data, rare classes necessitate additional model constraints for robust performance. Here, we present a strategy for incorporating short sequences of text (i.e. keywords) into training to boost model accuracy on rare classes. In our approach, we assemble a set of keywords, including short phrases, associated with each class. The keywords are then used as additional data during each batch of model training, resulting in a training loss that has contributions from both raw data and keywords. We evaluate our approach on classification of cancer pathology reports, which shows a substantial increase in model performance for rare classes. Furthermore, we analyze the impact of keywords on model output probabilities for bigrams, providing a straightforward method to identify model difficulties for limited training data.

First Page

2796

Last Page

2803

PubMed ID

35020599

Volume

26

Issue

6

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

File Format

pdf

File Size

3273 KB

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 7
  • Usage
    • Downloads: 25
    • Abstract Views: 1
  • Captures
    • Readers: 16
see details

Share

COinS