Differential expression of adipocyte and myotube extracellular vesicle miRNA cargo in chronic binge alcohol-administered SIV-infected male macaques

Document Type

Article

Publication Date

11-6-2022

Publication Title

Alcohol

Abstract

Our studies in chronic binge alcohol (CBA) -treated simian immunodeficiency virus (SIV)-infected macaques and in people living with HIV (PLWH) show significant alterations in metabolic homeostasis. CBA promotes a profibrotic phenotype in adipose tissue and skeletal muscle (SKM) and decreases adipose-derived stem cell and myoblast differentiation, making adipose and SKM potential drivers in metabolic dysregulation. Furthermore, we have shown that the differential expression of microRNAs (miRs) in SKM contributes to impaired myoblast differentiation potential. Beyond modulation of intracellular responses, miRs can be transported in extracellular vesicles (EVs) to mediate numerous cellular responses through intercellular and interorgan communication. This study tested the hypothesis that CBA alters concentration and miR cargo of EVs derived from adipocytes and myotubes isolated from SIV-infected male macaques. Fourteen male rhesus macaques received either CBA (2.5 g/kg/day) or sucrose (VEH) for 14.5 months. Three months following the initiation of CBA/VEH, all animals were infected with SIVmac251 and 2.5 months later were initiated on antiretroviral therapy. SKM and adipose tissue samples were collected at the study endpoint (blood alcohol concentration = 0 mM). EVs were isolated by ultracentrifugation of myotube and adipocyte cell culture supernatant. Nanoparticle tracking revealed no differences in concentration or size of particles between VEH and CBA groups. Adipocyte-derived EVs from CBA animals showed decreased miR-let-7a expression (p = 0.03). Myotube-derived EVs from CBA animals had decreased miR-16 (p = 0.04) and increased miR-133a and miR-133b (both p = 0.04) expression. These results indicate that CBA administration differentially regulates EV miR content but does not alter the number of EVs from adipocytes or myotubes. Future studies are warranted to determine the functional relevance of CBA-altered EV miR cargo and their role in intercellular and interorgan communication and metabolic dysregulation.

PubMed ID

36351490

Share

COinS