Document Type
Article
Publication Date
3-1-2022
Publication Title
Scientific Reports
Abstract
Glioblastomas are the most aggressive brain tumors for which therapeutic options are limited. Current therapies against glioblastoma include surgical resection, followed by radiotherapy plus concomitant treatment and maintenance with temozolomide (TMZ), however, these standard therapies are often ineffective, and average survival time for glioblastoma patients is between 12 and 18 months. We have previously reported a strong anti-glioblastoma activity of several metabolic compounds, which were synthetized based compounds, which were synthetized based on the chemical structure of a common lipid-lowering drug, fenofibrate, and share a general molecular skeleton of benzoylphenoxyacetamide (BPA). Extensive computational analyses of phenol and naphthol moieties added to the BPA skeleton were performed in this study with the objective of selecting new BPA variants for subsequent compound preparation and anti-glioblastoma testing. Initially, 81 structural variations were considered and their physical properties such as solubility (logS), blood–brain partitioning (logBB), and probability of entering the CNS calculated by the Central Nervous System—Multiparameter Optimization (MPO-CNS) algorithm were evaluated. From this initial list, 18 compounds were further evaluated for anti-glioblastoma activity in vitro. Nine compounds demonstrated desirable glioblastoma cell toxicity in cell culture, and two of them, HR51, and HR59 demonstrated significantly improved capability of crossing the model blood–brain-barrier (BBB) composed of endothelial cells, astrocytes and pericytes.
PubMed ID
35232976
Volume
12
Issue
1
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Stalinska, Joanna; Vittori, Cecilia; Ingraham IV, Charles H.; Carson, Sean C.; Plaisance-Bonstaff, Karlie; Lassak, Adam; Faia, Celeste; Colley, Susan B.; Peruzzi, Francesca; Reiss, Krzysztof; and Jursic, Branko S., "Anti-glioblastoma Effects Of Phenolic Variants Of Benzoylphenoxyacetamide (bpa) With High Potential For Blood Brain Barrier Penetration" (2022). School of Medicine Faculty Publications. 465.
https://digitalscholar.lsuhsc.edu/som_facpubs/465
10.1038/s41598-022-07247-8
File Format
File Size
2682 KB