Modeling Breast Cancer in Human Breast Tissue Using a Microphysiological System

Document Type

Article

Publication Date

4-23-2021

Publication Title

Journal of Visualized Experiments

Abstract

Breast cancer (BC) remains a leading cause of death for women. Despite more than $700 million invested in BC research annually, 97% of candidate BC drugs fail clinical trials. Therefore, new models are needed to improve our understanding of the disease. The NIH Microphysiological Systems (MPS) program was developed to improve the clinical translation of basic science discoveries and promising new therapeutic strategies. Here we present a method for generating MPS for breast cancers (BC-MPS). This model adapts a previously described approach of culturing primary human white adipose tissue (WAT) by sandwiching WAT between adipose-derived stem cell sheets (ASC)s. Novel aspects of our BC-MPS include seeding BC cells into non-diseased human breast tissue (HBT) containing native extracellular matrix, mature adipocytes, resident fibroblasts, and immune cells; and sandwiching the BC-HBT admixture between HBT-derived ASC sheets. The resulting BC-MPS is stable in culture ex vivo for at least 14 days. This model system contains multiple elements of the microenvironment that influence BC including adipocytes, stromal cells, immune cells, and the extracellular matrix. Thus BC-MPS can be used to study the interactions between BC and its microenvironment. We demonstrate the advantages of our BC-MPS by studying two BC behaviors known to influence cancer progression and metastasis: 1) BC motility and 2) BC-HBT metabolic crosstalk. While BC motility has previously been demonstrated using intravital imaging, BC-MPS allows for high-resolution time-lapse imaging using fluorescence microscopy over several days. Furthermore, while metabolic crosstalk was previously demonstrated using BC cells and murine pre-adipocytes differentiated into immature adipocytes, our BC-MPS model is the first system to demonstrate this crosstalk between primary human mammary adipocytes and BC cells in vitro.

PubMed ID

33970144

Volume

2021

Issue

170

Publisher

MyJove Corporation

Share

COinS