A Scalable Approach to Topographically Mediated Antimicrobial Surfaces Based on Diamond
Document Type
Article
Publication Date
12-28-2021
Publication Title
Journal of Nanobiotechnology
Abstract
Bio-inspired Topographically Mediated Surfaces (TMSs) based on high aspect ratio nanostructures have recently been attracting significant attention due to their pronounced antimicrobial properties by mechanically disrupting cellular processes. However, scalability of such surfaces is often greatly limited, as most of them rely on micro/nanoscale fabrication techniques. In this report, a cost-effective, scalable, and versatile approach of utilizing diamond nanotechnology for producing TMSs, and using them for limiting the spread of emerging infectious diseases, is introduced. Specifically, diamond-based nanostructured coatings are synthesized in a single-step fabrication process with a densely packed, needle- or spike-like morphology. The antimicrobial proprieties of the diamond nanospike surface are qualitatively and quantitatively analyzed and compared to other surfaces including copper, silicon, and even other diamond surfaces without the nanostructuring. This surface is found to have superior biocidal activity, which is confirmed via scanning electron microscopy images showing definite and widespread destruction of E. coli cells on the diamond nanospike surface. Consistent antimicrobial behavior is also observed on a sample prepared seven years prior to testing date.
PubMed ID
34963490
Volume
19
Issue
1
Publisher
BMC
Recommended Citation
Paxton, William F.; Rozsa, Jesse L.; Brooks, Morgan M.; Running, Mark P.; Schultz, David J.; Jasinski, Jacek B.; Jung, Hyun Jin; and Akram, Muhammad Zain, "A Scalable Approach to Topographically Mediated Antimicrobial Surfaces Based on Diamond" (2021). School of Medicine Faculty Publications. 333.
https://digitalscholar.lsuhsc.edu/som_facpubs/333
10.1186/s12951-021-01218-3