Authors

Mohammad Reza Ghasemi, SBUMS School of Medicine
Sahand Tehrani Fateh, Shahid Beheshti University of Medical Sciences
Afif Ben-Mahmoud, Qatar Biomedical Research Institute
Vijay Gupta, Qatar Biomedical Research Institute
Lara G. Stühn, Eberhard Karls Universität Tübingen
Gaetan Lesca, University Hospitals of Lyon (HCL)
Nicolas Chatron, University Hospitals of Lyon (HCL)
Konrad Platzer, Universität Leipzig
Patrick Edery, University Hospitals of Lyon (HCL)
Hossein Sadeghi, Shahid Beheshti University of Medical Sciences
Bertrand Isidor, CHU de Nantes
Benjamin Cogné, CHU de Nantes
Heidi L. Schulz, Zentrum für Humangenetik
Ilona Krauspe-Stübecke, Bethlehem Health Center Department of Pediatrics and Adolescent Medicine 5
Radhakrishnan Periyasamy, Kasturba Medical College, Manipal
Sheela Nampoothiri, Amrita Institute of Medical Sciences India
Reza Mirfakhraie, SBUMS School of Medicine
Sahar Alijanpour, SBUMS School of Medicine
Steffen Syrbe, Universitätsklinikum Heidelberg
Ulrich Pfeifer, Universitätsklinikum Heidelberg
Stephanie Spranger, Klinikum Bremen-Mitte
Kathrin Grundmann-Hauser, Eberhard Karls Universität Tübingen
Tobias B. Haack, Eberhard Karls Universität Tübingen
Maria T. Papadopoulou, University Hospitals of Lyon (HCL)
Tayrine da Silva Gonçalves, University Hospitals of Lyon (HCL)
Eleni Panagiotakaki, University Hospitals of Lyon (HCL)
Alexis Arzimanoglou, University Hospitals of Lyon (HCL)
Seyed Hassan Tonekaboni, Mofid Children's Hospital, Tehran
Yves Lacassie, LSU Health Sciences Center - New OrleansFollow
et al

Document Type

Article

Publication Date

12-20-2024

Publication Title

American Journal of Medical Genetics, Part A

Abstract

The Houge type of X-linked syndromic intellectual developmental disorder (MRXSHG) encompasses a spectrum of neurodevelopmental disorders characterized by intellectual disability (ID), language/speech delay, attention issues, and epilepsy. These conditions arise from hemizygous or heterozygous deletions, along with point mutations, affecting CNKSR2, a gene located at Xp22.12. CNKSR2, also known as CNK2 or MAGUIN, functions as a synaptic scaffolding molecule within the neuronal postsynaptic density (PSD) of the central nervous system. It acts as a link connecting postsynaptic structural proteins, such as PSD95 and S-SCAM, by employing multiple functional domains crucial for synaptic signaling and protein–protein interactions. Predominantly expressed in dendrites, CNKSR2 is vital for dendritic spine morphogenesis in hippocampal neurons. Its loss-of-function variants result in reduced PSD size and impaired hippocampal development, affecting processes including neuronal proliferation, migration, and synaptogenesis. We present 15 patients including three from the MENA (Middle East and North Africa), a region with no documented mutations in CNKSR2. Each individual displays unique clinical presentations that encompass developmental delay, ID, language/speech delay, epilepsy, and autism. Genetic analyses revealed 14 distinct variants in CNKSR2, comprising five nonsense, three frameshift, two splice, and four missense variants, of which 13 are novel. The ACMG guidelines unanimously interpreted these 14 variants in 15 individuals as pathogenic, highlighting the detrimental impact of these CNKSR2 genetic alterations and confirming the molecular diagnosis of MRXSHG. Importantly, variants Ser767Phe and Ala827Pro may lead to proteasomal degradation or reduced PSD size, contributing to the neurodevelopmental phenotype. Furthermore, these two amino acids, along with another two affected by four missense variants, exhibit complete conservation in nine vertebrate species, illuminating their crucial role in the gene's functionality. Our study revealed unique new digital and brain phenotype, including pointed fingertips (fetal pads of fingertips), syndactyly, tapering fingers, and hippocampal atrophy. These novel clinical features in MRXSHG, combined with 13 novel variants, expand the phenotypic and genotypic spectra of MRXSHG associated with CNKSR2 mutations.

PubMed ID

39707601

Comments

See article for full author list

Share

COinS