Inhalation of Particulate Matter Containing Free Radicals Leads to Decreased Vascular Responsiveness Associated With an Altered Pulmonary Function
Document Type
Article
Publication Date
10-1-2021
Publication Title
American Journal of Physiology - Heart and Circulatory Physiology
Abstract
Airborne particulate matter (PM) is associated with an increased risk for cardiovascular diseases. Although the goal of thermal remediation is to eliminate organic wastes through combustion, when incomplete combustion occurs, organics chemisorb to transition metals to generate PM-containing environmentally persistent free radicals (EPFRs). Similar EPFR species have been detected in PM found in diesel and gasoline exhaust, woodsmoke, and urban air. Prior in vivo studies demonstrated that EPFRs reduce cardiac function secondary to elevations in pulmonary arterial pressures. In vitro studies showed that EPFRs increase ROS and cytokines in pulmonary epithelial cells. We thus hypothesized that EPFR inhalation would promote lung inflammation and oxidative stress, leading to systemic inflammation, vascular endothelial injury, and a decline in vascular function. Mice were exposed to EPFRs for either 4 h or for 4 h/day for 10 days and lung and vascular function were assessed. After a 4-h exposure, plasma nitric oxide (NO) was reduced while endothelin-1 (ET-1) was increased, however lung function was not altered. After 10 day, plasma NO and ET-1 levels were again altered and lung tidal volume was reduced. These time course studies suggested the vasculature may be an early target of injury. To test this hypothesis, an intermediate time point of 3 days was selected. Though the mice exhibited no marked inflammation in either the lung or the blood, we did note significantly reduced endothelial function concurrent with a reduction in lung tidal volume and an elevation in annexin V protein levels in the lung. Although vascular dysfunction was not dependent upon inflammation, it may be associated with an injury at the air-blood interface. Gene expression analysis suggested roles for oxidative stress and aryl hydrocarbon receptor (Ahr) signaling. Studies probing the relationship between pulmonary oxidative stress and AhR signaling at the air-blood interface with vascular dysfunction seem warranted.
First Page
H667
Last Page
H683
PubMed ID
34415187
Volume
321
Issue
4
Publisher
American Physiological Society
Recommended Citation
Harmon, Ashlyn C.; Noël, Alexandra; Subramanian, Balamurugan; Perveen, Zakia; Jennings, Merilyn H.; Chen, Yi Fan; Penn, Arthur L.; Legendre, Kelsey; Paulsen, Daniel B.; Varner, Kurt J.; and Dugas, Tammy R., "Inhalation of Particulate Matter Containing Free Radicals Leads to Decreased Vascular Responsiveness Associated With an Altered Pulmonary Function" (2021). School of Medicine Faculty Publications. 297.
https://digitalscholar.lsuhsc.edu/som_facpubs/297
10.1152/ajpheart.00725.2020