ADAM17 Supports Disinhibition of Pre-sympathetic Glutamatergic Neurons Through Microglial Chemotaxis

Document Type

Article

Publication Date

8-4-2025

Publication Title

Neuroscience Bulletin

Abstract

A disintegrin and metalloprotease 17 (ADAM17) is a membrane-bound enzyme that cleaves cell-surface proteins. Here, we discovered that neuronal ADAM17-mediated signaling supports the reduction of inhibitory presynaptic inputs to the pre-sympathetic glutamatergic neural hub, located in the paraventricular nucleus of the hypothalamus (PVN), upon stimulation by angiotensin II (Ang-II). For Ang-II-induced disinhibition, targeting microglial migration had an effect similar to ADAM17 knockout in glutamatergic neurons. Ang-II promoted neuron-mediated chemotaxis of microglia via neuronal CX3CL1 and ADAM17. Inhibiting microglial chemotaxis by targeting CX3CR1 abolished the Ang-II-induced microglial displacement of GABAergic presynaptic terminals and significantly blunted Ang-II’s pressor response. Using conditional and targeted knockout models of ADAM17, an increase in the contact between pre-sympathetic neurons and reactive microglia in the PVN was demonstrated to be neuronal ADAM17-dependent during the developmental stage of salt-sensitive hypertension. Collectively, this study provides evidence that neuronal ADAM17-mediated microglial chemotaxis facilitates the disinhibition of pre-sympathetic glutamatergic tone upon hormonal stimulation.

PubMed ID

40758224

Share

COinS