Sex-Dependent Effects of Inhaled Nicotine on the Gut Microbiome

Document Type

Article

Publication Date

3-10-2022

Publication Title

Nicotine & Tobacco Research

Abstract

INTRODUCTION: The impact of nicotine, the addictive component of both traditional cigarettes and e-cigarettes, on many physiological processes remains poorly understood. To date, there have been few investigations into the impact of nicotine on the gut microbiome, and these studies utilized oral administration rather than inhalation. This study aimed to establish if inhaled nicotine alters the gut microbiome and the effect of sex as a biological variable. METHODS: Female (n = 8 air; n = 10 nicotine) and male (n = 10 air; n = 10 nicotine) C57BL6/J mice were exposed to air (control) or nicotine vapor (12 hour/day) for 13 weeks. A fecal sample was collected from each mouse at the time of sacrifice, and the gut microbiome was analyzed by 16S rRNA gene sequencing. QIIME2, PICRUSt, and STAMP were used to detect gut bacterial differences and functional metabolic pathways. RESULTS: Sex-specific differences were observed in both alpha and beta diversities in the absence of nicotine. While nicotine alters microbial community structure in both male and female mice as revealed by the beta diversity metric, nicotine significantly reduced alpha diversity only in female mice. A total of 42 bacterial taxa from phylum to species were found to be significantly different among the treatment groups. Finally, analysis for functional genes revealed significant differences in twelve metabolic pathways in female mice and ten in male mice exposed to nicotine compared to air controls. CONCLUSIONS: Nicotine inhalation alters the gut microbiome and reduces bacterial diversity in a sex-specific manner, which may contribute to the overall adverse health impact of nicotine. IMPLICATIONS: The gut microbiota plays a fundamental role in the well-being of the host, and traditional cigarette smoking has been shown to affect the gut microbiome. The effects of nicotine alone, however, remain largely uncharacterized. Our study demonstrates that nicotine inhalation alters the gut microbiome in a sex-specific manner, which may contribute to the adverse health consequences of inhaled nicotine. This study points to the importance of more detailed investigations into the influence of inhaled nicotine on the gut microbiota.

First Page

1363

Last Page

1370

PubMed ID

35271725

Volume

24

Issue

9

This document is currently not available here.

Share

COinS