Document Type
Article
Publication Date
1-25-2021
Publication Title
Journal for Immunotherapy of Cancer
Abstract
BACKGROUND: Poly(ADP-ribose) polymerase (PARP) inhibitors (eg, olaparib) are effective against BRCA-mutated cancers at/near maximum tolerated doses by trapping PARP-1 on damaged chromatin, benefitting only small patient proportions. The benefits of targeting non-DNA repair aspects of PARP with metronomic doses remain unexplored. METHODS: Colon epithelial cells or mouse or human bone marrow (BM)-derived-myeloid-derived suppressor cells (MDSCs) were stimulated to assess the effect of partial PARP-1 inhibition on inflammatory gene expression or immune suppression. Mice treated with azoxymethane/four dextran-sulfate-sodium cycles or mice bred into PARP-1 or treated with olaparib were used to examine the role of PARP-1 in colitis-induced or spontaneous colon cancer, respectively. Syngeneic MC-38 cell-based (microsatellite instability, MSI) or CT-26 cell-based (microsatellite stable, MSS) tumor models were used to assess the effects of PARP inhibition on host responses and synergy with anti-Programmed cell Death protein (PD)-1 immunotherapy. RESULTS: Partial PARP-1 inhibition, via gene heterozygosity or a moderate dose of olaparib, protected against colitis-mediated/ -mediated intestinal tumorigenesis and -associated cachexia, while extensive inhibition, via gene knockout or a high dose of olaparib, was ineffective or aggravating. A sub-IC50-olaparib dose or PARP-1 heterozygosity was sufficient to block tumorigenesis in a syngeneic colon cancer model by modulating the suppressive function, but not intratumoral migration or differentiation, of MDSCs, with concomitant increases in intratumoral T cell function and cytotoxicity, as assessed by granzyme-B/interferon-γ levels. Adoptive transfer of WT-BM-MDSCs abolished the protective effects of PARP-1 heterozygosity. The mechanism of MDSC modulation involved a reduction in arginase-1/inducible nitric oxide synthase/cyclo-oxygenase-2, but independent of PARP-1 trapping on chromatin. Although a high-concentration olaparib or the high-trapping PARP inhibitor, talazoparib, activated stimulator of interferon gene (STING) in BRCA-proficient cells and induced DNA damage, sub-IC50 concentrations of either drug failed to induce activation of the dsDNA break sensor. STING expression appeared dispensable for MDSC suppressive function and was not strictly required for olaparib-mediated effects. Ironically, STING activation blocked human and mouse MDSC function with no additive effects with olaparib. A metronomic dose of olaparib was highly synergistic with anti-PD-1-based immunotherapy, leading to eradication of MSI or reduction of MSS tumors in mice. CONCLUSIONS: These results support a paradigm-shifting concept that expands the utility of PARP inhibitor and encourage testing metronomic dosing of PARP inhibitor to enhance the efficacy of checkpoint inhibitor-based immunotherapies in cancer.
PubMed ID
33495297
Volume
9
Issue
1
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Recommended Citation
Ghonim, Mohamed A.; Ibba, Salome V.; Tarhuni, Abdelmetalab F.; Errami, Youssef; Luu, Hanh H.; Dean, Matthew J.; El-Bahrawy, Ali H.; Wyczechowska, Dorota; Benslimane, Ilyes A.; Del Valle, Luis; Al-Khami, Amir A.; Ochoa, Augusto C.; and Boulares, A Hamid, "Targeting PARP-1 with metronomic therapy modulates MDSC suppressive function and enhances anti-PD-1 immunotherapy in colon cancer" (2021). School of Graduate Studies Faculty Publications. 237.
https://digitalscholar.lsuhsc.edu/sogs_facpubs/237
10.1136/jitc-2020-001643
Included in
Medical Immunology Commons, Medical Microbiology Commons, Medical Pharmacology Commons, Oncology Commons