Title

Increased inflammatory low-density neutrophils in severe obesity and effect of bariatric surgery: Results from case-control and prospective cohort studies

Document Type

Article

Publication Date

3-1-2022

Publication Title

EBioMedicine

Abstract

BACKGROUND: Low-density neutrophils (LDN) are increased in several inflammatory diseases and may also play a role in the low-grade chronic inflammation associated with obesity. Here we explored their role in obesity, determined their gene signatures, and assessed the effect of bariatric surgery. METHODS: We compared the number, function, and gene expression profiles of circulating LDN in morbidly obese patients (MOP, n=27; body mass index (BMI) > 40 Kg/m) and normal-weight controls (NWC, n=20; BMI < 25 Kg/m) in a case-control study. Additionally, in a prospective longitudinal study, we measured changes in the frequency of LDN after bariatric surgery (n=36) and tested for associations with metabolic and inflammatory parameters. FINDINGS: LDN and inflammatory markers were significantly increased in MOP compared to NWC. Transcriptome analysis showed increased neutrophil-related gene expression signatures associated with inflammation, neutrophil activation, and immunosuppressive function. However, LDN did not suppress T cells proliferation and produced low levels of reactive oxygen species (ROS). Circulating LDN in MOP significantly decreased after bariatric surgery in parallel with BMI, metabolic syndrome, and inflammatory markers. INTERPRETATION: Obesity increases LDN displaying an inflammatory gene signature. Our results suggest that LDN may represent a neutrophil subset associated with chronic inflammation, a feature of obesity that has been previously associated with the appearance and progression of co-morbidities. Furthermore, bariatric surgery, as an efficient therapy for severe obesity, reduces LDN in circulation and improves several components of the metabolic syndrome supporting its recognized anti-inflammatory and beneficial metabolic effects. FUNDING: This work was supported in part by grants from the National Institutes of Health (NIH; 5P30GM114732-02, P20CA233374 - A. Ochoa and L. Miele), Pennington Biomedical NORC (P30DK072476 - E. Ravussin & LSU-NO Stanley S. Scott Cancer Center and Louisiana Clinical and Translational Science Center (LACaTS; U54-GM104940 - J. Kirwan).

First Page

103910

DOI

10.1016/j.ebiom.2022.103910

This document is currently not available here.

Share

COinS