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1  |  INTRODUC TION

For the first time in 1908, Professor Kikona Ikeda, introduced the 
MSG to the world as the taste of umami (Bayram et  al.,  2023). 
MSG is one of the most common flavor enhancers in food, which 
increases the intensity of the taste and improves palatability 
(Shosha et al., 2023). The sodium salt of glutamic acid is called MSG 
(C15H8NO4Na), which consists of glutamic acid, sodium, and water 
(Onyesife et  al.,  2023). Glutamic acid occurring naturally in food 
does not pose any health problems, while the formation of glutamic 
acid during industrial processes can have toxic effects on living cells 

(Chakraborty, 2019). MSG is typically considered as a safe food ad-
ditive by the FDA, EFSA (European Food Safety Authority), and the 
Joint FAO/WHO Committee on Food Additives (JECFA). These or-
ganizations have evaluated MSG and determined it to be safe for 
consumption within specified limits.

According to the FAO and WHO guidelines, the acceptable daily 
intake (ADI) of MSG is 120 mg/kg/bw/day (Xu et al., 2022). However, 
re-evaluations in 2017, EFSA proposed the ADI of 30 mg/kg/bw/day 
for using glutamate and its related salts as a food additive (Akshata 
et al., n.d.; Mennella et al., 2023). It is worth noting that laboratory 
animal studies have shown adverse effects of chronic consumption 
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of MSG in body organs such as the liver, brain, pancreas, kidney, 
and testis, along with increasing the prevalence of diseases in-
cluding hypertension, obesity, asthma, exacerbation, headaches, 
detrimental, neurotoxicity, and effects on the reproductive organs 
(Hajihasani et al., 2020). Ingesting MSG can lead to oxidative stress, 
which can exacerbate the chronic effects mentioned earlier (Kamal 
et al., 2023). Foods high in protein, such as cheese, meat, eggs, fish, 
and certain vegetables like tomatoes, mushrooms, and green beans, 
as well as fermented foods like fermented bean paste and soy sauce, 
are the primary sources of glutamate (Hamad, 2022; Xu et al., 2022).

The human intestine is composed of 100 trillion microbial 
cells collectively known as gut microbiome or microbiota (Wang 
et al., 2023). Various factors including diet, metabolism, immunity, 
mental and physical stress, antibiotics, ethnicity, gender, age, intes-
tinal milieu, and geographic location influence the gut microbiota 
(Lu et al., 2022; Pongking et al., 2020). Recent studies have shown 
that the gut microbiota have a significant impact on various physio-
logical functions, including mucosal immune homeostasis, immuno-
modulation, supporting intestinal permeability, and the integrity of 
host epithelium, as well as inhibiting the colonization of pathogens. 
Additionally, gut microbiota plays a crucial role in energy metabo-
lism, fat storage, vitamin synthesis, fermentation of monosaccha-
rides, degradation of polysaccharides, reduction of cholesterol, and 
metabolism of drugs or xenobiotic (Roshanravan et al., 2023). The 
gut microbiota can be manipulated using pro- and prebiotics to con-
trol metabolic syndromes. The application of certain probiotic spe-
cies together with different prebiotics has demonstrated promising 
results in improving lipid profiles, glycemic control, and inflamma-
tory markers in human subjects (Hadi et al., 2021). Recent studies 
demonstrated that dairy or nondairy fermented foods are great 
sources of pro- and prebiotics, or as nutrition supplements, which 
can be useful in certain medical disorders, including gastroenteritis, 
and respiratory tract infection (Tavakoly et al., 2021).

Recent studies have shown that long-term consumption of 
MSG has a negative impact on the population of beneficial bacte-
rial species such as Lactobacillus sp. and other probiotics in the gut, 
while the population of certain pathogens such as Escherichia and 
Bacteroides are increased, which means the double side effects of 
the MSG on intestinal flora. MSG also affects other related species 
and genera, especially Megamonas, Faecalibacterium, and Blautia 
species, which are decreased, while the Collinsella species is in-
creased (Peng et al., 2018). Exopeptidase enzyme naturally occurs 
in human intestine and is responsible for proteins break down. MSG 
is generally found in hydrolyzed vegetable protein, which activates 
orosensory receptors and improves the taste of food. However, 
excessive consumption of MSG can affect the appetite center, 
leading to obesity (Zanfirescu et  al.,  2019). According to previous 
research, both humans and experimental animals may receive harm-
ful effects from relatively low doses of MSG (0.6 and 1.6 mg/g body 
weight for 2 weeks or 100–500 mg/kg body weight for 3 weeks). 
Conducting a comprehensive experimental study to ascertain the 
toxicity, long-term intake of MSG in individuals is challenging due 
to various factors such as moral concerns, and dietary guidelines 

(Umukoro et al., 2015; Zanfirescu et al., 2019). However, quantify-
ing excitotoxic neurotransmission in mammals may be effectively 
achieved using rodent models. Consequently, rodent models are 
the subject of the vast majority of review publications. Researchers 
have shown that MSG-induced dyslipidemia modifies the LDL/HDL 
ratio in obese subjects without causing a hyperphagic response, 
which results in heightened insulin levels, fibrosis, and steatosis in 
rats (Fujimoto et al., 2014). Furthermore, some studies showed that 
MSG induced hepatocellular injury by changing liver metabolism 
and raising the levels of alanine aminotransferase (ALAT), aspartate 
aminotransferase (ASAT), and gamma-glutamyl transferase (Manal 
Said & Nawal, 2012). MSG has been associated with hepatocellular 
apoptosis through various theories, including the presence of struc-
tural anomaly in the mitochondria and endoplasmic reticulum with 
karyopyknosis that is undergoing apoptosis, as well as the upregu-
lation of apoptotic mediator proteins like p53 and ki-67 (Osman & 
Daghestani, 2012).

According to previous studies, there is correlation between MSG 
consumption and gut microbiota, as well as metabolic dysbiosis that 
may be related to it. Therefore, the purpose of this study is to con-
duct a systematic review of the association between MSG intake and 
modifications in intestinal flora, as well as any associated metabolic 
dysbiosis.

2  |  METHOD

2.1  |  Search strategies

A systematic literature search have been conducted through data-
bases including Scopus, ScienceDirect, Web of Science, and PubMed 
for articles published during 2000–2024 February (Figure 1). In ad-
dition, the reference list of related articles was checked to find more 
articles. The search strategy was to combine searches of monoso-
dium glutamate, and gut microbiota with the operators “OR” and/
or “AND.” A total 14 articles were chosen after conducting eligibility 
analysis and cross-referencing, in accordance with the guidelines of 
the systematic review-PRISMA (Transparent reporting of system-
atic reviews and meta-analyses, http://​www.​prism​a-​state​ment.​org). 
A complete electronic search strategy for PubMed is provided in 
Table S1.

2.2  |  Selection criteria and quality assessment

Two authors (H.A and B. B) independently performed the search and 
data extraction process. They reviewed the abstracts, titles, and full 
texts of articles that met the inclusion criteria, and again, the data-
bases were reexamined by the authors (A.K and M.T) to resolve any 
discrepancies.

The inclusion criteria for this article were access to the full text 
of the articles, a review of MSG safety studies, and a review of stud-
ies on the effects of MSG on gut microbiota. The exclusion criteria 
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were as follows: Letter to the editor and lack of access to the full text 
of the articles.

3  |  RESULTS AND DISCUSSION

3.1  |  Effect of monosodium glutamate on body 
function

There have been few studies conducted on safety of the MSG. One 
such study was conducted by Xu et al. (2022), who investigated the 
safety of MSG based on function of gut flora in mice, and showed 
that the levels of angiotensin II, trimethylamine oxide (TMAO), and 
C-reactive protein did not increase in the supplement of 30 mg/kg 
compared to the control group of mice. However, in the 300 mg/
kg supplement, only the angiotensin II biomarker increased in com-
parison to the control sample. In addition, in the 1500 mg/kg supple-
ment, all three biomarkers were found to be increased. C-reactive 
protein is a sensitive inflammatory biomarker that is generally used 
to specify disease and inflammatory activity (Escadafal et al., 2020). 
TMAO is produced from trimethylamine metabolism by gut micro-
biota and eliminated from the body by the kidney. Previous stud-
ies reported that TMAO can interfere with the reverse transport of 
cholesterol, facilitating the release of inflammatory cytokines and 
increase the risk of developing cardiovascular disease (CVD) (Seldin 
et  al.,  2016). Another study showed that consumption of MSG by 
male rats increased the serum level of TMAO and decreased TMAO 
excretion in urine (Kyaw et al., 2022). Studies have shown that el-
evated plasma TMAO concentration leads to fat deposition in blood 
vessels, which promotes the development of atherosclerosis and in-
creases the risk of myocardial infarction and stroke (Randrianarisoa 
et  al.,  2016; Stremmel et  al.,  2017; Tang et  al.,  2015; Velasquez 

et al., 2016; Wang et al., 2011). Xu et al. (2022) reported that a dose 
of 30 mg/kg of MSG led to the growth of intestinal villi, which could 
be attributed to the metabolism of MSG by epithelial cells. In ad-
dition, the results showed that 1500 mg/kg of MSG caused intes-
tinal permeability to be disturbed, and albumin leaked as a result. 
This damage was linked to the disruption of osmotic pressure in the 
intestine due to the excessive accumulation of sodium ions, which 
resulted in harm to the bowel barrier structure.

In a study by Nakadate et al., 2016, the pathological changes of 
small intestinal epithelial cells in MSG-induced obesity have been 
determined. The obese mice did not show any changes in their mac-
roscopic anatomy; however, a closer look using light microscopy re-
vealed that their small intestine had thinned and elongated villi. In a 
similar study, rats that were given MSG at 4, 8, and 12 weeks of age 
showed that the length of their intestinal villi gradually increased as 
they aged. (Hamaoka & Kusunoki, 1986). The hyperplasia in small in-
testine is possibly due to the acceleration of absorptive function. In 
another study by Nemeroff et al. (1977), consumption of MSG from 
1 month of age led to decreased thyroid hormone levels and less 
spontaneous activity in obese mice compared to the control group 
(Nemeroff et al., 1978). On the other hand, the authors showed that 
in the stretched villi of intestinal mucosa, might induce the nutri-
ents absorption and obesity. According to the results of the study by 
Nakadate et al. (2016), MSG-treated obese mice showed decreased 
proliferation of the Golgi apparatus in the epithelium of the small 
intestine and the amount of rough endoplasmic reticulum (rER). The 
rER has numerous critical functions, including the protein transpor-
tation in vesicles to the Golgi apparatus and the folding of proteins in 
cisternae; therefore, these functions could be affected by changes in 
the rER of intestinal mucosa cells. Pongking et al. (2020) have studied 
the effect of MSG consumption and high fat and fructose (HFF) diet 
on the composition of gut microbiota with co-observation of urine 

F I G U R E  1  The screening method of 
included studies from scientific databases.
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metabolite alteration and kidney injury in hamsters. The 20 mg/mL 
dose of MSG was applied based on an average intake of MSG in 
humans in the range of 0.4–14 mg/day (Insawang et al., 2012). In a 
study, it was reported that the MSG decreased the gene expression 
of tight junction proteins (Occludin) in the colon (Z. Feng, Li, Wu, 
Tao, et al., 2015).

Based on these findings, the study showed that enzyme activity 
in the small intestine plays a crucial role in regulating energy bal-
ance in MSG-induced obese rats. This finding suggests that MSG 
overconsumption can affect various factors, including enzymatic 
activity, leading to changes in gut microbiota (Mozes et al., 2004a). 
As previously mentioned, both genetic and physiological factors 
can affect the composition of gut microbiota. Alongside these, di-
etary fat, temperature, and the use of antibiotics can also have an 
impact. However, it is not yet clear how MSG affects these factors, 
and subsequently, how it may alter the gut microbiota (Z. Feng, 
Li, Wu, Tao, et al., 2015).On the other hand, the ingestion of high 
concentrations of glutamate in the form of monosodium salts can 
lead to neurotoxicity through the over-activation of glutamatergic 
receptors (Choudhary et al., 1996). This point highlights the neuro-
degenerative effect of MSG on the brain, particularly in immature 
animals, and causes damage in specific regions of the brain where 
there is no blood–brain barrier, including the hypothalamus' arcuate 
nucleus (Hinoi et al., 2004). Moreover, high levels of MSG intake can 
cause kidney injury by increasing the production of reactive oxygen 
species (ROS), which in turn triggers interstitial fibrosis in renal tu-
bules and development of the chronic kidney disease (CKD) (Cerdá 
et al., 2016).

Ortiz et al. (2006) conducted a study to investigate the effects 
of MSG injection on the enzyme level, lipid peroxidation, and mor-
phological changes in the kidney and liver of rats. The study found 
that MSG injection increased the activity of ALAT and ASAT en-
zymes. Injection of 4 mg/g body weight of MSG caused an increase 
in the levels of malondialdehyde (MDA) and 4-hydroxyalkenals as 
a response to liver and kidney damage. The kidneys and livers of 
rats injected with MSG were pale in color with clear symptoms of 
edema, congestion, and loss of hepatic borders. When MSG is con-
verted to glutamine in hepatic cells, the cells try to repair part of the 
damage using enzymes produced by the smooth endoplasmic retic-
ulum. However, the liver is unable to remove the excessive levels 
of glutamine, leading to turbid swelling, vesicular degeneration, and 
ultimately necrosis (Ortiz et al., 2006).

In a study performed by Sharma et al. (2013), it was found that 
Wistar rats treated with 2 mg/g of body weight of MSG for 9 months 
developed lithiasis. The rats fed with MSG showed the presence of 
numerous kidney stones with smooth surfaces in the calyx and pel-
vis, along with typical features of hydronephrosis, as observed by 
gross anatomical inspection of the kidneys. The MSG-treated rats 
also showed significantly higher urine pH and higher serum creati-
nine levels. This study was the first to report that chronic ingestion 
of dietary MSG can cause urolithiasis and obstructive nephropathy 
in adult rats by increasing the urine's alkalinity. The main mechanism 
responsible for this is not yet known; however, it is assumed that 

the catabolic products of glutamate in kidney cells are converted 
into bicarbonate anion, which is then absorbed for excretion by the 
kidney. Oral consumption of MSG increases urinary pH, and a renal 
compensation mechanism neutralizes this alkalinity by elevating 
the excretion of organic anions such as citrate during the alkali load 
(Sharma et al., 2013).

Paul et al. (2012) conducted a study to investigate the effect of 
α-tocopherol in protecting against oxidative stress in Wistar rats 
orally treated with MSG at a dose of 4 g/kg/day. The results showed 
that chronic intake of MSG led to a significant increase in the levels 
of serum urea, creatinine, and uric acid. There was also an increase 
in lipid peroxidation markers, including MDA and conjugated dienes 
(CD), in renal tissues. Moreover, the activity of antioxidant enzymes, 
such as glutathione peroxidase (GPx), catalase (CAT), superoxide dis-
mutase (SOD), and glutathione transferase (GST), was significantly 
decreased after MSG administration. Histopathological examination 
of the kidney in the MSG-fed group revealed cloudy swelling of the 
tubules, glomerular and vascular congestion, and microhemorrhages 
in stromal areas. These findings are consistent with other studies 
that report the nephrotoxicity of MSG (Paul et al., 2012).

A study conducted by Insawang et  al.  (2012) found a link be-
tween the daily consumption of MSG and the risk of metabolic syn-
dromes in a rural area of Thailand. In this study, 324 families with 
487 participants were involved, and they were given 250 g of edi-
ble MSG to be consumed over 10 days as a flavor enhancer in their 
food preparation. The results indicated that MSG intake led to an in-
crease in the prevalence of elevated blood pressure, hyperglycemia, 
and enhanced waist circumference. However, these differences did 
not show any statistical significance. After adjusting the data for po-
tential confounding factors, the results pointed out that MSG con-
sumption was independently linked to having metabolic syndrome. 
Meanwhile, increasing the ingestion of MSG slightly increased the 
odds of metabolic syndrome and overweight. Furthermore, the 
study found a significant trend in increasing insulin levels and prev-
alence of insulin resistance across groups receiving MSG. However, 
glucose homeostasis did not show any significant changes. The find-
ings of the animal model studies were consistent with those of this 
study. MSG consumption was found to increase the rate of lipogen-
esis and enhance the shifting of dietary glucose toward lipid synthe-
sis by activating the gene expression of enzymes involved in lipid 
biosynthesis (Insawang et al., 2012).

3.2  |  Microbial and metabolites changes

As reported by Kyaw et  al.  (2022), the gut microbiota causes sig-
nificant changes in Verrucomicrobia and Firmicutes by modification in 
TMAO production. On the other hand, no significant changes have 
been reported in trimethylamine (TMA)-producing bacteria within 
the Streptococcus, Clostridium, Enterococcus, Desulfitobacterium, 
Staphylococcus, Haloanearobacter, which are from phylum Firmicutes 
and Proteobacteria (Romano et al., 2015). As stated by the authors, 
effective factors in the modification of gut microbiota were genetics, 
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the pH of the lumen, and age. In addition, researchers have proven 
that MSG suppresses the number of Verrucomicrobia spp. as benefi-
cial bacteria in the gut (Peng et al., 2018). Further, Akkermansia mu-
ciniphila, a subphylum of Verrucomicrobia, was suppressed, related 
to the TMAO level (Griffin et al., 2019) and precisely implicated in the 
mucus thickness, gut barrier, and even immune responses (Ottman 
et al., 2017), with valuable clinical associations (Zhang et al., 2019). 
The reverse effect of MSG on Lactobacillus intestinalis in comparison 
with A. muciniphila may be a consequence of the compensation ef-
fects to homeostasis sustaining in the host since both bacterial spe-
cies apply the functional roles for the protection of the gut barrier 
(Lim et al., 2021). The researchers found that MSG intake was also 
associated with water intake and urine output (Elliot et al., 1996). It 
is possible to evaluate the level of MSG in animals by measuring their 
urine output and water intake. Previous studies have shown that 
MSG increases the serum level of TMAO, which is produced by the 
gut microbiota through the metabolism of TMA. Additionally, MSG 
has been found to decrease the renal excretion of TMAO (Zeisel & 
Warrier, 2017).

Mozes et al. (2004a) investigated the effect of MSG on alkaline 
phosphatase levels, which is an enzyme involved in the absorption of 
nutrients, especially fat, and the transportation of long-chain fatty 
acids. Yeh et al. (1994) reported that the level of alkaline phospha-
tase mRNA in the small gut of lactating rats increased over time from 
Day 12 to Day 24, and on Day 14 led to a decrease in the level of 
alkaline phosphatase in the whole membrane of the small intestine 
compared to the normally fed rats. However, the results of Mozes 
et al. (2004b) demonstrated the increased activity of alkaline phos-
phatase in 40-day-old obese control rats and MSG-treated rats. 
Both groups exhibited normophagia, indicating changes as a result 
of postnatal overnutrition. However, MSG-treated rats showed sig-
nificantly higher alkaline phosphatase activity suggesting that MSG 
may cause persistent changes in the small bowel's function. The con-
sumption of MSG can affect these factors and lead to changes in the 
population of gut microbiota.

Researchers have shown that a high-salt diet can have detrimen-
tal effects on the function and structure of the intestinal microbi-
ota, including Lactobacillus (Miranda et al., 2018). In this way, Peng 
et al. (2018) have explored the effects of MSG on composition of the 
gut microbiota through high-throughput sequencing. The findings 
revealed that gut microbiota diversity was similar at various MSG 
consumption phases. In addition, the following principal coordinate 
analysis showed there was no substantial difference in the micro-
bial composition before and after MSG exposure, indicating that the 
MSG effect was insignificant compared to host genotypes. Overall, 
Bacteroidetes and Firmicutes were described as the two main phyla 
in all the samples, consistent with previous studies that have identi-
fied these phyla as the most abundant in the human gut. (Claesson 
et al., 2009). The authors reported no significant change in intestinal 
bacterial population due to MSG consumption; however, a partic-
ular variation trend of specific genera was stated. A study showed 
that, the abundance of Faecalibacterium, Blautia, and Megamonas 
decreased slightly, but Collinsella increased in MSG consumption 

(Maslowski et al., 2009). Blautia is considered as one of the useful in-
testinal bacteria as a short chain fatty acids producer (SCFAs) (Zhang 
et al., 2015). In contrast, Sun et al. (2018) reported a suggestive as-
sociation between Megamonas and systemic inflammatory cytokines 
as well as endotoxin, both of which are known to be increased in 
Budd–Chiari syndrome, and their levels experienced a slight decline 
throughout the experiment. Figure 2 presented the mechanism of 
MSG and derived metabolites on gut microbiota modulations, kid-
ney, and liver injury.

Xu et  al.  (2022) reported that high MSG consumption might 
affect the survival of some bacterial species due to their different 
salt tolerance. In this study, various doses of MSG had no signifi-
cant effects on Bacteroidetes and Firmicutes populations of rat's in-
testine. This indicated that MSG might have minor effects on the 
gut microbiome population. Additionally, multiple studies have 
demonstrated that consumption of MSG alone in pigs did not sig-
nificantly affect the Bacteroidetes and Firmicutes populations (Feng, 
Li, Wu, Xiao, et al., 2015). Remarkably, MSG promoted the growth of 
Patescibacteria, which is widely found in soil, seawater, and the ani-
mal's digestive tracts. Changes in several Lachnospiraceae NK4A136 
groups, Roseburia and Blautia, have been detected at the genus level, 
which are SCFAs-producing genera (T. Liu, Guo, et al., 2020). SCFAs 
play significant roles in ameliorating obesity, hypertension, and dys-
lipidemia (Pongking et al., 2020), and previous studies indicated that 
the Methanobrevibacter promotes polysaccharides fermentation by 
H2 removal, and increases the levels of SCFAs in the colon and adi-
pose tissue (Jiang et al., 2017).

Moreover, the population of beneficial bacterial genera 
Lactobacillus (MN326537) and Allobaculum (MN326542) were de-
creased in hamsters with MSG and HFF diets (Jakobsson et al., 2015). 
These findings were evidenced by Liu, Chen, et al. (2020) in a study 
on the effects of MSG on the composition of human gut microbes 
and production of SCFAs. In this survey, the in vitro fermentation of 
gut microbiota using MSG as substrate was studied and the SCFAs 
and γ-aminobutyric acid (GABA) content were determined. The re-
sults showed that the total level of SCFAs in the MSG fermentation 
was significantly higher than in the control models, with a 26-fold 
increase in butyric acid content.

Moreover, excessive intake of MSG enhances the abundance of 
Bacteroidetes and Alistipes. Alistipes stimulate the inflammatory re-
actions of host and are abundant in type 2 diabetic patients (Wan 
et  al.,  2019). Findings implied that MSG intake might improve in-
testinal flora by enhancing amino acid and energy supply. High 
doses can cause dysbiosis and increase illness-associated microbi-
ota. According to previous studies, the imbalance of Firmicutes and 
Bacteroidetes is related to obesity (Macfarlane & Macfarlane, 1997) 
and a higher Bacteroidetes/Firmicutes is proved ratio in gastro-
intestinal tract of obese animal models and humans (Kalliomäki 
et al., 2008). The reviewed studies indicated that MSG has effects 
on both beneficial or pathogen bacterial groups, as indicated by Liu, 
Chen, et  al.  (2020), by in  vitro fermentation of MSG, the relative 
abundance of Proteobacteria and Bacteroidetes phyla increased, while 
the Actinobacteria and Firmicutes phyla decreased. Additionally, the 
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genera Escherichia, Shigella and Bacteroides experienced an increase 
in population.

In a study by Feng, Li, Wu, Xiao, et al., 2015, the consumption of 
MSG in a high-fat diet modified the intestinal microbiota composition 
by increasing the Bacteroidetes/Firmicutes ratio within a small range. 
Contrary to reported studies, the ratio of Firmicutes/Bacteroidetes was 
reduced in the jejunum, suggesting that modification in composition 
of gut microbiota might be dependent on anatomical compartments. 
However, no noticeable effect on the microbiota composition was ob-
served when MSG was given alone. At the same time, the individual 
supplementation of either MSG or fat diet did not affect the 
Bacteroidetes/Firmicutes ratio in the colon. However, when the two 
nutrients were included simultaneously, this ratio was increased. 
According to this study, dietary fat increased the proportion of colonic 
Methanobrevibacter smithii, a hydrogen-consuming methanogen 
(Eckburg et  al.,  2005), while MSG exhibited the converse effect. 
However, the obtained results revealed no association between the 
relative number of this bacterial species and dietary fat consumption. 
The M. smithii can stimulate Bacteroides thetaiotaomicron to produce 
formic acid by decomposing the fructose (Samuel et al., 2007), which 
can act in synergistic effect for energy harvesting from 

polysaccharides (Samuel & Gordon, 2006). Even though Bacteroides 
thetaiotaomicron was not detected in this study that suggests a high-
fat diet, MSG can affect the colonization of M. smithii and amount of 
the polysaccharide broken down in the intestines. Similarly, dietary fat 
increases the ratio of Peptostreptococcus products, which can degrade 
lignin (Clavel et al., 2006). At the same time, its relative quantity in the 
colon was decreased, signifying that the effect of dietary adjustments 
may be dissimilar based on the segment of the intestine. In a study, 
MSG was found to decrease the presence of Peptostreptococcus prod-
ucts in both the jejunum and colon, indicating the complex interac-
tions of these dietary compounds on the intestinal microbiome. The 
results also showed that the species most impacted by MSG and di-
etary fat was Fusobacterium prausnitzii. It has been reported that more 
Faecalibacterium prausnitzii were found in the gut of obese persons 
than in their lean counterparts (Balamurugan et  al.,  2010). Dietary 
supplementation with both MSG and high fat enhances the percent-
age of these two bacterial species by three to sixfold. Besides, the 
addition of MSG has shown no effect on Prevotella, which has a great 
capability in fermentation and hydrolysis of dietary fibers to form pro-
pionic acid and acetic acid. In conclusion, this survey revealed that 
both MSG and dietary fat intensified intestinal microbiota diversity, 

F I G U R E  2  Mechanism of MSG and 
derived metabolites on gut microbiota 
modulations, kidney, and liver injury.
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which can be considered paradoxical to some previously published 
studies. The results indicated that the combination of HFF and MSG 
diets led to modifications of the gut microbiota, damage to kidney 
tissues, a decrease of urine TMAO and indoxyl sulfate, and intensifi-
cation of p-cresol sulfate production level. The sequencing of prokary-
otic 16S rRNA sequences in V3-V4 regions showed that the 
HFF + MSG diet could alter the gut microbiota composition. These 
findings aligned with Han et  al.  (2015) by the high ratio of 
Bacteroidetes/Firmicutes in the HFF + MSG diet group. The diversity 
tests revealed that changes of gut microbiota composition in MSG-
treated hamsters, were insignificant, which is in line with a former re-
port in humans. MSG diet has led to proliferation of Citrobacter 
(MN326558), Ruminococcus-1 (MN326532), and Roseburia 
(MN326554), whereas the increase of Roseburia after MSG consump-
tion has been reported again (Peng et al., 2018). Roseburia is a class of 
butyrate-producing anaerobic gut bacteria that is negatively depen-
dent to CKD progression, and the increase of Roseburia (MN326554) 
population might be due to intake of MSG since the glutamate can be 
converted to butyrate (Jiang et al., 2016). The Citrobacter genus pro-
duces the tyrosine phenol-lyase enzyme, which converts L-tyrosine to 
4-hydroxyphenylpyruvate and metabolizes into p-cresol sulfate, 
which induce toxicity (Kikuchi et al., 2019). It was previously reported 
that the MSG + HFF dietary supplementation intensifies the 
Fusobacterium prausnitzii, Clostridium coccoides, F. prausnitzii, 
Peptostreptococcus, Roseburia, and Prevotella in the cecum; however, it 
decreases the Clostridium leptum and Bacteroides thetaiotaomicron the 
subgroup (Feng, Li, Wu, Xiao, et  al.,  2015). The levels of beneficial 
bacterial genera, including Allobaculum (MN326542) and Lactobacillus 
(MN326537) were lower in hamsters exposed to either MSG or HFF 
diets. The reduction in the number of probiotics like Lactobacillus may 
have an impact on the level of uremic toxin. On the other hand, the 
proportion of harmful microorganisms, such as those belonging to the 
Shigella and Escherichia genus, grew in hamsters that were fed the HFF 
and/or MSG diet, as reported earlier (Kong et  al.,  2019). The 
Firmicutes/Bacteroidetes ratio indicates that the MSG + HFF diet in-
tensifies gut dysbiosis in hamsters as a model. Thus, the dysbiosis ini-
tiates alteration of gut-derived metabolites, including TMAO, indoxyl 
sulfate, and p-cresol sulfate, which contribute to kidney injury (Hsu 
et al., 2018). The findings suggest that HFF and MSG intake resulted 
in an increase of p-cresol sulfate levels, but a decrease in indoxyl sul-
fate and TMAO levels when compared to the control group. P-cresol 
sulfate is identified as the primary component of urinary myelin's 
basic protein material, which can cause kidney tubular cell damage 
due to oxidative stress (Watanabe et al., 2013). The correlation of p-
cresol sulfate and Akkermansia has been recently reported (Visconti 
et al., 2019). HFF and the MSG diet in hamsters showed decreased 
TMAO levels in urine but increased Methanobrevibacter (MN326530) 
in the fecal samples. TMAO disrupts the changing of growth factor-β 
(TGF-beta)/Smad3 signaling pathway and impairs renal function (Sun 
et  al.,  2017). Recent studies have reported an association between 
the reduction of TMAO and Methanobrevibacter population (Ramezani 
et al., 2018); the reduction of TMAO might be due to the other gut 
microbiota activities. Nahok et al. (2021) have studied the effects of 

MSG intake on the gut microbiome and metabolic profiles of Wistar 
rats. The study found that rats treated with MSG showed changes in 
Bacteroidetes and Firmicutes. Specifically, the results showed a higher 
abundance of Firmicutes compared to Bacteroidetes. In addition, the 
study also revealed that the MSG-treated mice had a higher abun-
dance of Clostridium than Bifidobacterium and Lactobacillus. It is worth 
noting that the genus Clostridium includes the microorganisms that 
generally belong to the Firmicutes phylum, and are correlated with 
TMA metabolism by converting choline to TMA (Jameson et al., 2018; 
Rath et al., 2020). The increase of TMA-producing bacterial species, 
that is, Clostridium spp., supports the increase of TMA metabolites in 
the urine and kidney of rats. Moreover, the MSG intake reduced the 
Bifidobacterium population, which plays a significant role in gut ho-
meostasis and health (O'Callaghan & Van Sinderen, 2016). Previously, 
a reduction in Bifidobacterium abundance has been observed in hepa-
titis B and other chronic inflammatory diseases (Xu et al., 2012), dia-
betes (Murri et  al.,  2013), and obesity (Santacruz et  al.,  2010). The 
effect of MSG intake on the gut microbiota in humans was reported 
previously, and showed no important changes in the composition of 
gut microbiota compared to the baseline (Peng et  al.,  2018). 
Nonetheless, the low effect of MSG on the gut microbiota may be 
caused by the low dose supplementation such as 2 g/day, as the aver-
age intake of MSG is reported to be 4 g/day (Insawang et al., 2012). 
The Bifidobacterium population in MSG-treated rats has been reduced 
which was comparable to rats with a lack of dietary vitamin B6 
(Mayengbam et al., 2020), and further studies are needed to find how 
MSG decreases probiotic bacterial species and alters vitamin B6 
levels.

Alongside these findings, most of the conducted studies are 
limited on animal models, especially rats, to verify if MSG is a risk 
factor of metabolic syndrome in humans, a longitudinal survey with 
a large sample size is required. This study must consider different 
nationalities, diets, and other confounding factors such as age, sex, 
physical activity, calorie intake, smoking status, and history of dia-
betes. Therefore, it is crucial to adjust the data accordingly to obtain 
accurate results. As metabolic syndrome is a growing global emer-
gency, it is essential to investigate the potential risks associated with 
MSG consumption.

4  |  CONCLUSION

Excessive consumption of MSG can elevate the risk of cardiovas-
cular diseases and disrupt the functioning of the gut microbiome. 
Furthermore, long-term consumption of MSG can have significant 
effects on the metabolism of TMA, branched-chain amino acids, 
and vitamin B6, as well as on the combined changes in the gut mi-
crobiota, renal, and hepatic metabolism. Evidence from studies on 
animal models demonstrated the association between MSG and 
the development of glucose intolerance, and obesity together with 
hypertrophy of adipose tissue, hyperglycemia, hyperinsulinemia, hy-
perleptinemia, and even decreased glucose transport in adipocytes 
and muscle. The outcomes of this study offer a new outlook and 
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groundwork for future research on the impact and safety of MSG 
on human health.
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